158 research outputs found

    Pricing options and computing implied volatilities using neural networks

    Full text link
    This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an optimized ANN on a data set generated by a sophisticated financial model, and runs the trained ANN as an agent of the original solver in a fast and efficient way. We test this approach on three different types of solvers, including the analytic solution for the Black-Scholes equation, the COS method for the Heston stochastic volatility model and Brent's iterative root-finding method for the calculation of implied volatilities. The numerical results show that the ANN solver can reduce the computing time significantly

    A neural network-based framework for financial model calibration

    Full text link
    A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.Comment: 34 pages, 9 figures, 11 table

    D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

    Full text link
    In this paper, we propose a machine learning algorithm for time-inconsistent portfolio optimization. The proposed algorithm builds upon neural network based trading schemes, in which the asset allocation at each time point is determined by a a neural network. The loss function is given by an empirical version of the objective function of the portfolio optimization problem. Moreover, various trading constraints are naturally fulfilled by choosing appropriate activation functions in the output layers of the neural networks. Besides this, our main contribution is to add options to the portfolio of risky assets and a risk-free bond and using additional neural networks to determine the amount allocated into the options as well as their strike prices. We consider objective functions more in line with the rational preference of an investor than the classical mean-variance, apply realistic trading constraints and model the assets with a correlated jump-diffusion SDE. With an incomplete market and a more involved objective function, we show that it is beneficial to add options to the portfolio. Moreover, it is shown that adding options leads to a more constant stock allocation with less demand for drastic re-allocations.Comment: 27 pages, 7 figure
    • …
    corecore